Let us now come to the study of non-linear equations.
Definition 9.6 (separable eqs.) :
A first order ODE $y^{\prime}=f(x, y)$ is said to be separable if $F(x, y)$ can be expressed as a product

$$
\begin{equation*}
y^{\prime}=g(x) h(y), \quad x \in I . \tag{1}
\end{equation*}
$$

Solution Method:
Assume that the solution $y=y(x)$ exists, and that $h(y) \neq 0$ for $x \in I$. Then dividing by $h(y)$ gives

$$
\frac{y^{\prime}(x)}{h[y(x)]}=g(x) .
$$

Integrating and using the substitution $d y=y^{\prime} d x$ then gives

$$
\int \frac{y^{\prime}(x)}{n[y(x)]} d x=\int \frac{d y}{n(y)}=H(y)
$$

Hence we arrive at

$$
\begin{equation*}
H[y(x)]=\int g(x) d x+C \tag{2}
\end{equation*}
$$

where $H(y)$ is a function with the property:

$$
H^{\prime}(y)=\frac{1}{h(y)} .
$$

\rightarrow Equation (2) gives an implicit form of the solution
Example 9.6:
i) $y^{\prime}=\frac{x-5}{y^{2}}$
solution: We multiply both sides with y^{2} and get

$$
y^{2} y^{\prime}=(x-5)
$$

Integrating both sides we get

$$
y^{3} / 3=x^{2} / 2-5 x+C .
$$

Hence, $y=\left[3 x^{2} / 2-15 x+c\right]^{\frac{1}{3}}$.
ii) $y^{\prime}=\frac{y-1}{x+3} \quad(x>-3)$.
solution: By inspection, $y=1$ is a solution. Dividing both sides of the given eq. by $y-1$ we get

$$
\frac{y^{\prime}}{y-1}=\frac{1}{x+3}
$$

(possible if $y(x) \neq 0$)

Integrating both sides we get

$$
\int \frac{y^{\prime}}{y-1} d x=\int \frac{d x}{x+3}+C_{1}
$$

from which we get

$$
\log |y-1|=\log |x+3|+c_{1} .
$$

Thus

$$
|y-1|=e^{C_{1}}(x+3)
$$

from which by solving for y and letting $C:= \pm e^{c_{1}}$ we get

$$
y=1+c(x+3)
$$

iii) $y^{\prime}=\frac{y \cos x}{1+2 y^{2}}$
solution: Multiplying both sides by $\frac{1+2 y^{2}}{y}$ and integrating gives

$$
\int \frac{\left(1+2 y^{2}\right)}{y} d y=\int \cos x d x+C_{1}
$$

from which we get a family of solutions

$$
\log |y|+y^{2}=\sin x+C
$$

where C is an arbitrary constant.
This is not the most general solution
as does not contain the solution $y=0$! With initial condition $y(0)=1$, we get $C=1$, hence the solution

$$
\log |y|+y^{2}=\sin x+1
$$

Example 9.7 (Logistic equation):
$y^{\prime}=a y(b-y), a, b>0$ fixed constants
(Recall $P(t)=k P\left(1-\frac{P}{M}\right)=\frac{k}{M} P(M-P)$

$$
\left.\Rightarrow a=\frac{K}{M}, b=M\right)
$$

We already know about the two constant solutions $y=0$ and $y=b$
To find more general solutions, we rewrite the logistic eq. as:

$$
\frac{y^{\prime}}{y(b-y)}=a
$$

Integrating both sides we get

$$
\begin{align*}
& \int \frac{y^{\prime} d t}{y(b-y)}
\end{align*}=a t+C .
$$

By partial fractions

$$
\frac{1}{y(b-y)}=\frac{1}{b}\left(\frac{1}{y}+\frac{1}{b-y}\right)
$$

$\rightarrow(*)$ can be written as

$$
\frac{1}{b}(\log |y|-\log |b-y|)=a t+C .
$$

Multiplying both sides by b and exponentiating gives

$$
\frac{|y|}{|b-y|}=e^{b c} e^{a b t}=C_{1} e^{a b t}
$$

where the arbitrary constant $C_{1}=e^{b c}>0$ can be determined by the initial condition:

$$
Y(0)=Y_{0} \quad \text { as } \quad C_{1}=\frac{\left|Y_{0}\right|}{\left|b-Y_{0}\right|}
$$

Two cases need to be discussed separately.
Case $I: ~ Y_{0}<b$: one has $C_{1}=\left|\frac{Y_{0}}{b-Y_{0}}\right|=\frac{Y_{0}}{b-Y_{0}}>0$.
So $\quad \frac{|y|}{|b-y|}=\left(\frac{y_{0}}{b-y_{0}}\right) e^{a b t}>0, \quad t \in I$
From the above we derive

$$
\begin{aligned}
& \frac{y}{b-y}=C_{1} e^{a b t}, \quad y=(b-y) C_{1} e^{a b t} \\
\Rightarrow \quad & y=\frac{b C_{1} e^{a b t}}{1+C_{1} e^{a b t}}
\end{aligned}
$$

This shows that if $Y_{0}=0$, one has the solution $y(t)=0$. However, if $0<y_{0}<b$, one has the solution $0<y(t)<b$, and as $t \rightarrow \infty, y(t) \longrightarrow b$.

Case II: $\quad y_{0}>b$
One has $C_{1}=\left|\frac{Y_{0}}{b-Y_{0}}\right|=\frac{-Y_{0}}{b-Y_{0}}>0$. Then

$$
\left|\frac{y}{b-y}\right|=\left(\frac{y_{0}}{y_{0}-b}\right) e^{a b t}>0, \quad t \in I
$$

From this we get

$$
\begin{aligned}
\frac{y}{y-b} & =\left(\frac{y_{0}}{y_{0}-b}\right) e^{a b t} \\
\Leftrightarrow y & =\frac{b\left(\frac{y_{0}}{y_{0}-b}\right) e^{a b t}}{\left(\frac{y_{0}}{y_{0}-b}\right) e^{a b t}-1}
\end{aligned}
$$

It shows that if $y_{0}>b_{\text {, }}$ one has the solution $y(t)>b$, and as $t \rightarrow \infty, y(t) \rightarrow b$. Altogether, Case I and Case II show:

- $Y(t)=0$ is an unstable equilibrium of the system
- $Y(t)=b$ is a stable equilibrium of the system.
§ 9.4 Higher order Equations:
The most general linear second-arder differential equation is given by

$$
\begin{equation*}
P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=G(x) \tag{1}
\end{equation*}
$$

where P, Q, R and G are continuous functions of x.
Definition 9.7:
The case $G(x)=0$ in (1) is called a "homogeneous" second order linear ODE. If $G(x) \neq 0$, eq. (1) is called inhomogeneous.
Proposition 9.3:
If $Y_{1}(x)$ and $Y_{2}(x)$ are both solutions of the homogeneous eq. $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0,(2)$ then the function

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x), \quad c_{1}, c_{2} \in \mathbb{R}
$$

is also a solution of (2).
Proof: $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y$

$$
\begin{aligned}
& =P(x)\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime \prime}+Q(x)\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime}+R(x)\left(c_{1} y_{1}+c_{2} y_{2}\right) \\
& =c_{1}\left[P(x) y_{1}^{\prime \prime}+Q(x) y_{1}^{\prime}+R(x) y_{1}\right]+c_{2}\left[P(x) y_{2}^{\prime \prime}+Q(x) y_{2}^{\prime}+R(x) y_{2}\right]=0
\end{aligned}
$$

Solutions are in general not easily discovered
\rightarrow simplify by taking P, R, Q to be constants:

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{3}
\end{equation*}
$$

for some constants a, b, c in \mathbb{R}.
substitute the ansatz $y=e^{r x}$ into (3):

$$
a r^{2} e^{r x}+b r e^{r x}+c e^{r x}=0
$$

or $\left(a r^{2}+b r+c\right) e^{r x}=0$
Since $e^{r x} \neq 0 \quad \forall x \in \mathbb{R}, \quad y=e^{r x}$ is a solution of (2) if r is a root of the equation:

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{4}
\end{equation*}
$$

\rightarrow "characteristic equation"
Roots of (4) are given by the quadratic formula:

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

We distinguish three cases according to the sign of the discriminant $b^{2}-4 a c$:
1): $b^{2}-4 a c>0 \quad$ 2): $b^{2}-4 a c=0 \quad$ 3): $b^{2}-4 a c<0$
1): $b^{2}-4 a c>0$

In this case roots r_{1} and r_{2} are real and distinct, so $y_{1}=e^{r_{1} x}$ and $y_{2}=e^{r_{2} x}$ are two linearly independent solutions (meaning $Y_{1} \neq k Y_{2}$ for any $k \in \mathbb{R}$)
\Rightarrow By Prop. 9.3

$$
\begin{equation*}
y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x} \tag{5}
\end{equation*}
$$

is also a solution of (3)

